Abstract
The coordination chemistries of the tetradentate N2O2-type ligands N-(2-pyridylmethyl)iminodiethanol (H2pmide) and N-(2-pyridylmethyl)iminodiisopropanol (H2pmidip) have been investigated with nickel(ii) and cobalt(ii/iii) ions. Three novel complexes prepared and characterized are [(Hpmide)2Ni3(CH3COO)4] (1), [(Hpmide)2Co3(CH3COO)4] (2), and [(pmidip)2Co3(CH3COO)4] (3). In 1 and 2, two terminal nickel(ii)/cobalt(ii) units are coordinated to one Hpmide- and two CH3CO2-. The terminal units are each connected to a central nickel(ii)/cobalt(ii) cation through one oxygen atom of Hpmide- and two oxygen atoms of acetate ions, giving rise to nickel(ii) and cobalt(ii) trinuclear complexes, respectively. Trinuclear complexes 1 and 2 are isomorphous. In 3, two terminal cobalt(iii) units are coordinated to pmidip2- and two CH3CO2-. The terminal units are each linked to a central cobalt(ii) cation through two oxygen atoms of pmidip2- and one oxygen atom of a bidentate acetate ion, resulting in a linear trinuclear mixed-valence cobalt complex. 1 shows a weak ferromagnetic interaction with the ethoxo and acetato groups between the nickel(ii) ions (g = 2.24, J = 2.35 cm-1). However, 2 indicates a weak antiferromagnetic coupling with the ethoxo and acetato groups between the cobalt(ii) ions (g = 2.37, J = -0.5 cm-1). Additionally, 3 behaves as a paramagnetic cobalt(ii) monomer, due to the diamagnetic cobalt(iii) ions in the terminal units (g = 2.53, =D= = 36.0 cm-1). No catalytic activity was observed in 1. However, 2 and 3 showed significant catalytic activities toward various olefins with modest to good yields. 3 was slightly less efficient toward olefin epoxidation reaction than 2. Also 2 was used for terminal olefin oxidation reaction and was oxidised to the corresponding epoxides in moderate yields (34-75%) with conversions ranging from 47-100%. The cobalt complexes 2 and 3 promoted the O-O bond cleavage to ∼75% heterolysis and ∼25% homolysis.
Original language | English |
---|---|
Pages (from-to) | 14089-14100 |
Number of pages | 12 |
Journal | Dalton Transactions |
Volume | 45 |
Issue number | 36 |
DOIs | |
State | Published - 2016 |