TY - JOUR
T1 - Ultra-thick semi-crystalline photoactive donor polymer for efficient indoor organic photovoltaics
AU - Shin, Sang Chul
AU - Koh, Chang Woo
AU - Vincent, Premkumar
AU - Goo, Ji Soo
AU - Bae, Jin Hyuk
AU - Lee, Jae Joon
AU - Shin, Changhwan
AU - Kim, Hyeok
AU - Woo, Han Young
AU - Shim, Jae Won
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/4
Y1 - 2019/4
N2 - An in-depth study on the photovoltaic characteristics under indoor lights, i.e., light-emitting diode (LED), fluorescent lamps, and halogen lamps, was performed with varying the photoactive layer thickness (120–870 nm), by comparing those under 1-sun condition. The semi-crystalline mid-gap photoactive polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and a fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 70 BM) were used as a photoactive layer. In the contrary to the measurements under 1-sun condition, the indoor devices show a clearly different behavior, showing the thickness tolerant short-circuit current density (J SC ) and fill factor (FF) values with 280–870 nm thick photoactive layers. The retained J SC and FF values of thick indoor devices were discussed in terms of the parasitic resistance effects based on the single-diode equivalent circuit model. The much lower series/shunt resistance (Rs/R P ) ratio was measured with thick photoactive layer (≥280 nm), resulting in negligible decreases in the J SC and FF values even with a 870-nm-thick active layer under the LED condition. Under 1000 lx LED light, the PPDT2FBT:PC 70 BM device showed an optimum power conversion efficiency (PCE) of 16% (max power density, 44.8 μW/cm 2 ) with an open-circuit voltage of 587 mV, a J SC of 117 μA/cm 2 , and a FF of 65.2. The device with a 870-nm-thick active layer still exhibited an excellent performance with a PCE of 12.5%. These results clearly suggest that the critical parasitic resistance effects on the performance vary depending on the light illumination condition, and the large R P associated with the viable thick photoactive layer and the well-matched absorption (of photoactive layer) with the irradiance spectrum (of indoor light) are essential to realize efficient indoor photovoltaic cells with high J SC and FF.
AB - An in-depth study on the photovoltaic characteristics under indoor lights, i.e., light-emitting diode (LED), fluorescent lamps, and halogen lamps, was performed with varying the photoactive layer thickness (120–870 nm), by comparing those under 1-sun condition. The semi-crystalline mid-gap photoactive polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and a fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 70 BM) were used as a photoactive layer. In the contrary to the measurements under 1-sun condition, the indoor devices show a clearly different behavior, showing the thickness tolerant short-circuit current density (J SC ) and fill factor (FF) values with 280–870 nm thick photoactive layers. The retained J SC and FF values of thick indoor devices were discussed in terms of the parasitic resistance effects based on the single-diode equivalent circuit model. The much lower series/shunt resistance (Rs/R P ) ratio was measured with thick photoactive layer (≥280 nm), resulting in negligible decreases in the J SC and FF values even with a 870-nm-thick active layer under the LED condition. Under 1000 lx LED light, the PPDT2FBT:PC 70 BM device showed an optimum power conversion efficiency (PCE) of 16% (max power density, 44.8 μW/cm 2 ) with an open-circuit voltage of 587 mV, a J SC of 117 μA/cm 2 , and a FF of 65.2. The device with a 870-nm-thick active layer still exhibited an excellent performance with a PCE of 12.5%. These results clearly suggest that the critical parasitic resistance effects on the performance vary depending on the light illumination condition, and the large R P associated with the viable thick photoactive layer and the well-matched absorption (of photoactive layer) with the irradiance spectrum (of indoor light) are essential to realize efficient indoor photovoltaic cells with high J SC and FF.
KW - Indoor light conditions
KW - Organic photovoltaics
KW - Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2, 5]thiadiazole)]
KW - Semi-crystalline polymer
KW - Single-diode equivalent circuit model
KW - Ultra-thick photoactive layer
UR - http://www.scopus.com/inward/record.url?scp=85060755955&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2019.01.061
DO - 10.1016/j.nanoen.2019.01.061
M3 - Article
AN - SCOPUS:85060755955
SN - 2211-2855
VL - 58
SP - 466
EP - 475
JO - Nano Energy
JF - Nano Energy
ER -