Ultra-Wideband Differential Line-to-Balanced Line Transitions for Super-High-Speed Digital Transmission

Byung Cheol Min, Gwan Hui Lee, Jung Seok Lee, Syifa Haunan Nashuha, Hyun Chul Choi, Kang Wook Kim

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

A conventional differential line (DL), commonly used on typical digital circuit boards for transmitting high-speed digital data, has fundamental limitations on the maximum signal bandwidth (~10 GHz), mainly due to signal skew, multiple line coupling, and EM interference. Therefore, to support super-high-speed digital data transmission, especially for beyond 5G communications, a practical high-performance transmission structure for digital signals is required. Balanced lines (BLs) can transmit the differential signals with multiple advantages of ultra-wide bandwidth, common-mode rejection, reduced crosstalk, phase recovery, and skew reduction, which enable super-high-speed transmission. In order to utilize the BLs in the DL-based digital circuit, connecting structures between a DL and BLs are required, but the DL-to-BL transition structures dominate the operating bandwidth and signal properties. Therefore, in this paper, properties, and design methods for two ultra-wideband DL-to-BL transitions, i.e., DL-to-CPS (coplanar stripline) and DL-to-PSL (parallel stripline) transitions, are presented. Both implemented DL-to-CPS and DL-to-PSL transitions provide high-quality performance up to 40 GHz or higher, significantly enhancing the frequency bandwidth for the transmission of digital signals while providing compatibility with the DL-based PCBs. The fabricated DL-to-CPS transition performs well from DC to 40 GHz with an insertion loss of less than 0.86 dB and a return loss of more than 10 dB, and the fabricated DL-to-PSL transition also provides good performance from DC to 40 GHz, with an insertion loss of less than 1.34 dB and a return loss of more than 10 dB. Therefore, the proposed DL-to-BL transitions can be applied to achieve super-high-speed digital data transmission with over 40 GHz bandwidth, which is more than four times the bandwidth of the DL, supporting over 200 Gbps of digital data transmission on PCBs for the next generation of advanced communications.

Original languageEnglish
Article number6873
JournalSensors
Volume22
Issue number18
DOIs
StatePublished - Sep 2022

Keywords

  • balanced line
  • conformal mapping
  • differential line
  • DL-to-BL transitions
  • high-speed digital circuit
  • planar transmission lines
  • ultra-wideband technology

Fingerprint

Dive into the research topics of 'Ultra-Wideband Differential Line-to-Balanced Line Transitions for Super-High-Speed Digital Transmission'. Together they form a unique fingerprint.

Cite this