TY - JOUR
T1 - Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala
AU - Park, Sook K.yung
AU - Kim, Jong H.o.
AU - Yang, Eun S.un
AU - Ahn, Dong K.uk
AU - Moon, Cheil
AU - Bae, Yong C.hul
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29%) in the aPir contacted 2-4 postsynaptic dendrites, only 7% of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95%) contacted dendritic spines, whereas most identified boutons in the MeA (64%) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.
AB - Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29%) in the aPir contacted 2-4 postsynaptic dendrites, only 7% of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95%) contacted dendritic spines, whereas most identified boutons in the MeA (64%) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.
UR - http://www.scopus.com/inward/record.url?scp=85027935666&partnerID=8YFLogxK
U2 - 10.1007/s00429-013-0588-5
DO - 10.1007/s00429-013-0588-5
M3 - Article
C2 - 23756876
AN - SCOPUS:85027935666
SN - 1863-2653
VL - 219
SP - 1603
EP - 1613
JO - Brain Structure and Function
JF - Brain Structure and Function
IS - 5
ER -