TY - JOUR
T1 - Uncertainty assessment of soil erosion model using particle filtering
AU - Kim, Yeonsu
AU - Lee, Giha
AU - An, Hyunuk
AU - Yang, Jae E.
N1 - Publisher Copyright:
© 2015, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg.
PY - 2015/7/31
Y1 - 2015/7/31
N2 - Recent advances in computer with geographic information system (GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space. However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes. Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty. To deal with the uncertain parameters of a catchment-scale soil erosion model (CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling (PF) is introduced in the CSEM. The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets. PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set. CSEM-PF was applied to a small mountainous catchment of the Yongdam dam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events. Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.
AB - Recent advances in computer with geographic information system (GIS) technologies have allowed modelers to develop physics-based models for modeling soil erosion processes in time and space. However, it has been widely recognized that the effect of uncertainties on model predictions may be more significant when modelers apply such models for their own modeling purposes. Sources of uncertainty involved in modeling include data, model structural, and parameter uncertainty. To deal with the uncertain parameters of a catchment-scale soil erosion model (CSEM) and assess simulation uncertainties in soil erosion, particle filtering modeling (PF) is introduced in the CSEM. The proposed method, CSEM-PF, estimates parameters of non-linear and non-Gaussian systems, such as a physics-based soil erosion model by assimilating observation data such as discharge and sediment discharge sequences at outlets. PF provides timevarying feasible parameter sets as well as uncertainty bounds of outputs while traditional automatic calibration techniques result in a time-invariant global optimal parameter set. CSEM-PF was applied to a small mountainous catchment of the Yongdam dam in Korea for soil erosion modeling and uncertainty assessment for three historical typhoon events. Finally, the most optimal parameter sets and uncertainty bounds of simulation of both discharge and sediment discharge at each time step of the study events are provided.
KW - Data assimilation
KW - Mountainous catchment
KW - Parameter estimation
KW - Particle filter
KW - Soil erosion modeling
KW - Time variant parameter
UR - http://www.scopus.com/inward/record.url?scp=84938387529&partnerID=8YFLogxK
U2 - 10.1007/s11629-014-3408-3
DO - 10.1007/s11629-014-3408-3
M3 - Article
AN - SCOPUS:84938387529
SN - 1672-6316
VL - 12
SP - 828
EP - 840
JO - Journal of Mountain Science
JF - Journal of Mountain Science
IS - 4
ER -