Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment

Rafiqul Alam, Raisul Awal Mahmood, Syful Islam, Fenny Clara Ardiati, Nissa Nurfajrin Solihat, Md Badrul Alam, Sang Han Lee, Dede Heri Yuli Yanto, Sunghwan Kim

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-N[dbnd]N-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.

Original languageEnglish
Article number137505
JournalChemosphere
Volume313
DOIs
StatePublished - Feb 2023

Keywords

  • Biodegradation
  • Molecular docking
  • T. hirsuta D7
  • Toxicity assessment
  • UPLC-PDA-FTICR MS

Fingerprint

Dive into the research topics of 'Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment'. Together they form a unique fingerprint.

Cite this