Unscented kalman filter-aided long short-term memory approach for wind nowcasting

Junghyun Kim, Kyuman Lee

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Obtaining reliable wind information is critical for efficiently managing air traffic and airport operations. Wind forecasting has been considered one of the most challenging tasks in the aviation industry. Recently, with the advent of artificial intelligence, many machine learning techniques have been widely used to address a variety of complex phenomena in wind predictions. In this paper, we propose a hybrid framework that combines a machine learning model with Kalman filtering for a wind nowcasting problem in the aviation industry. More specifically, this study has three objectives as follows: (1) compare the performance of the machine learning models (i.e., Gaussian process, multi-layer perceptron, and long short-term memory (LSTM) network) to identify the most appropriate model for wind predictions, (2) combine the machine learning model selected in step (1) with an unscented Kalman filter (UKF) to improve the fidelity of the model, and (3) perform Monte Carlo simulations to quantify uncertainties arising from the modeling process. Results show that short-term time-series wind datasets are best predicted by the LSTM network compared to the other machine learning models and the UKF-aided LSTM (UKF-LSTM) approach outperforms the LSTM network only, especially when long-term wind forecasting needs to be considered.

Original languageEnglish
Article number236
JournalAerospace
Volume8
Issue number9
DOIs
StatePublished - Sep 2021

Keywords

  • Long short-term memory
  • Unscented kalman filter
  • Wind nowcasting

Fingerprint

Dive into the research topics of 'Unscented kalman filter-aided long short-term memory approach for wind nowcasting'. Together they form a unique fingerprint.

Cite this