TY - JOUR
T1 - Urban Quality of Life Assessment Using Satellite Image and Socioeconomic Data in GIS
AU - Jun, Byong-Woon
PY - 2006/10/30
Y1 - 2006/10/30
N2 - This paper evaluates and maps the quality of life in the Atlanta, Georgia metropolitan area in 2000. Three environmental variables from Landsat TM data, four socioeconomic variables from census data, and a hazard-related variable from toxic release inventory (TRI) database were integrated into a geographic information system (GIS) environment for the quality of life assessment. To solve the incompatibility problem in areal units among different data, the four socioeconomic variables aggregated by zonal units were spatially disaggregated into individual pixels. Principal components analysis (PCA) was employed to integrate and transform environmental, socioeconomic, and hazard-related variables into a resultant quality of life score for each pixel. Results indicate that the highest quality of life score was found around Sandy Springs, Roswell, Alphretta, and the northern parts of Fulton County along Georgia 400 whereas the lowest quality of life score was clustered around Smyma of Cobb County, the inner city of Atlanta, and Hartsfield-Jackson International Airport. The results also reveals that normalized difference vegetation index (NDVI) and relative risk from TRI facilities are two versatile indicators of environmental and socioeconomic quality of an urban area in the United States.
AB - This paper evaluates and maps the quality of life in the Atlanta, Georgia metropolitan area in 2000. Three environmental variables from Landsat TM data, four socioeconomic variables from census data, and a hazard-related variable from toxic release inventory (TRI) database were integrated into a geographic information system (GIS) environment for the quality of life assessment. To solve the incompatibility problem in areal units among different data, the four socioeconomic variables aggregated by zonal units were spatially disaggregated into individual pixels. Principal components analysis (PCA) was employed to integrate and transform environmental, socioeconomic, and hazard-related variables into a resultant quality of life score for each pixel. Results indicate that the highest quality of life score was found around Sandy Springs, Roswell, Alphretta, and the northern parts of Fulton County along Georgia 400 whereas the lowest quality of life score was clustered around Smyma of Cobb County, the inner city of Atlanta, and Hartsfield-Jackson International Airport. The results also reveals that normalized difference vegetation index (NDVI) and relative risk from TRI facilities are two versatile indicators of environmental and socioeconomic quality of an urban area in the United States.
KW - Satellite Image
KW - Socioeconomic Data
KW - GIS
KW - Urban Quality of Life
U2 - 10.7780/kjrs.2006.22.5.325
DO - 10.7780/kjrs.2006.22.5.325
M3 - Article
SN - 1225-6161
VL - 22
SP - 325
EP - 335
JO - Korean Journal of Remote Sensing
JF - Korean Journal of Remote Sensing
IS - 5
ER -