TY - JOUR
T1 - Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment
AU - Lee, Soo Ah
AU - Choo, Kwang Ho
AU - Lee, Chung Hak
AU - Lee, Ho In
AU - Hyeon, Taegwhan
AU - Choi, Wonyong
AU - Kwon, Heock Hoi
PY - 2001/4/4
Y1 - 2001/4/4
N2 - This study investigated the ability of cross-flow ultrafiltration (UF), combined with photocatalytic reactions, to separate TiO2 photocatalysts from treated water in photocatalytic drinking water treatment. The effect of natural organic matter (i.e., humic acids) and cross-flow velocities on UF fluxes and organic removal was explored with and without UV irradiation in the photocatalytic reactor. The interaction between the two solutes in the system, humic acids and TiO2 photocatalysts, played a significant role in the formation of dense cake layers at the membrane surface, leading to a greater flux decline during ultrafiltration of TiO2 particles. According to visual observations of the used membranes and the estimation of back-transport velocities of the solutes, a substantial amount of TiO2 deposited on the membrane induces more humic acids to accumulate at the membrane through the adsorption of humic acids onto TiO2 particles. The humic-acid-laden TiO2 particles offered more than four times higher specific cake resistance with a substantially increased compressibility coefficient than TiO2 particles alone. The higher the cross-flow velocities, the greater the UV254 removal achieved. This was because the rise of cross-flow velocities contributed to the reduction of concentration polarization at the membrane surface, thereby resulting in a decrease of the driving force for humic acids to pass through the membrane. When photocatalytic reactions took place with UV illumination, UV254 removal efficiencies of the permeate were improved markedly, and also the permeate flux was kept at a constant level without any sign of fouling. Although humic acids were not completely mineralized by photocatalysis, the degradation of the humic acids helped to enhance the UF flux, as they were transformed to less adsorbable compounds.
AB - This study investigated the ability of cross-flow ultrafiltration (UF), combined with photocatalytic reactions, to separate TiO2 photocatalysts from treated water in photocatalytic drinking water treatment. The effect of natural organic matter (i.e., humic acids) and cross-flow velocities on UF fluxes and organic removal was explored with and without UV irradiation in the photocatalytic reactor. The interaction between the two solutes in the system, humic acids and TiO2 photocatalysts, played a significant role in the formation of dense cake layers at the membrane surface, leading to a greater flux decline during ultrafiltration of TiO2 particles. According to visual observations of the used membranes and the estimation of back-transport velocities of the solutes, a substantial amount of TiO2 deposited on the membrane induces more humic acids to accumulate at the membrane through the adsorption of humic acids onto TiO2 particles. The humic-acid-laden TiO2 particles offered more than four times higher specific cake resistance with a substantially increased compressibility coefficient than TiO2 particles alone. The higher the cross-flow velocities, the greater the UV254 removal achieved. This was because the rise of cross-flow velocities contributed to the reduction of concentration polarization at the membrane surface, thereby resulting in a decrease of the driving force for humic acids to pass through the membrane. When photocatalytic reactions took place with UV illumination, UV254 removal efficiencies of the permeate were improved markedly, and also the permeate flux was kept at a constant level without any sign of fouling. Although humic acids were not completely mineralized by photocatalysis, the degradation of the humic acids helped to enhance the UF flux, as they were transformed to less adsorbable compounds.
UR - http://www.scopus.com/inward/record.url?scp=0035804565&partnerID=8YFLogxK
U2 - 10.1021/ie000738p
DO - 10.1021/ie000738p
M3 - Article
AN - SCOPUS:0035804565
SN - 0888-5885
VL - 40
SP - 1712
EP - 1719
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
IS - 7
ER -