Abstract
Vanadium is a chemical element that enters the atmosphere via anthropogenic pollution. Exposure to vanadium affects cancer development and can result in toxic effects. Multiple studies have focused on vanadium's detrimental effect on male reproduction using conventional sperm analysis techniques. This study focused on vanadium's effect on spermatozoa following capacitation at the molecular level, in order to provide a more detailed assessment of vanadium's reproductive toxicity. We observed a decrease in germ cell density and a structural collapse of the testicular organ in seminiferous tubules during vanadium treatment. In addition, various sperm motion parameters were significantly decreased regardless of capacitation status, including sperm motility, rapid sperm motility, and progressive sperm motility. Curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency, and mean amplitude of head lateral displacement were also decreased after capacitation. Capacitation status was altered after capacitation. Vanadium dramatically enhanced protein kinase A (PKA) activity and tyrosine phosphorylation. Taken together, our results suggest that vanadium is detrimental to male fertility by negatively influencing sperm motility, motion kinematics, and capacitation status via abnormal PKA activity and tyrosine phosphorylation before and after capacitation.
Original language | English |
---|---|
Pages (from-to) | 195-201 |
Number of pages | 7 |
Journal | Reproductive Toxicology |
Volume | 96 |
DOIs | |
State | Published - Sep 2020 |
Keywords
- Capacitation status
- Protein kinase A
- Sperm motility
- Tyrosine phosphorylation
- Vanadium