TY - JOUR
T1 - Visible-light-induced photocatalytic activity in FeNbO4 nanoparticles
AU - Cho, In Sun
AU - Lee, Sangwook
AU - Hong-Noh, Jun
AU - Choi, Geun Kyu
AU - Jung, Hyun Suk
AU - Kim, Dong Wan
AU - Hong, Kug Sun
PY - 2008/11/27
Y1 - 2008/11/27
N2 - A novel method was used to synthesize orthorhombic FeNbO4 nanoparticles by a hydrothermal process followed by calcination at 600°C, and their optical, photoelectrochemical, and photocatalytic properties were investigated. The microstructural and local structural properties were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), and Raman spectroscopy. The FeNbO4 particles obtained were composed of much smaller nanocrystallines, with an average size of 10-20 nm, compared to particles prepared at 1000°C through a conventional solid-state reaction method. Moreover, the optical band gap energy of the nanoparticles was estimated to be 1.93 eV from the UV-vis diffuse reflectance, and their flat-band potential in 1 M NaOH was -0.4 V (SCE). The X-ray photoelectron spectroscopy analysis revealed that the nanoparticles had fewer surface defects, such as oxygen vacancies, than the particles prepared by the solid-state reaction method. The FeNbO 4 nanoparticles also exhibited a much higher photocatalytic activity for the degradation of rhodamine B dye solution under visible light irradiation (>420 nm). This higher photocatalytic activity of the FeNbO4 nanoparticles was attributed to their higher optical absorption ability and smaller particle size, as well as fewer surface defects.
AB - A novel method was used to synthesize orthorhombic FeNbO4 nanoparticles by a hydrothermal process followed by calcination at 600°C, and their optical, photoelectrochemical, and photocatalytic properties were investigated. The microstructural and local structural properties were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), and Raman spectroscopy. The FeNbO4 particles obtained were composed of much smaller nanocrystallines, with an average size of 10-20 nm, compared to particles prepared at 1000°C through a conventional solid-state reaction method. Moreover, the optical band gap energy of the nanoparticles was estimated to be 1.93 eV from the UV-vis diffuse reflectance, and their flat-band potential in 1 M NaOH was -0.4 V (SCE). The X-ray photoelectron spectroscopy analysis revealed that the nanoparticles had fewer surface defects, such as oxygen vacancies, than the particles prepared by the solid-state reaction method. The FeNbO 4 nanoparticles also exhibited a much higher photocatalytic activity for the degradation of rhodamine B dye solution under visible light irradiation (>420 nm). This higher photocatalytic activity of the FeNbO4 nanoparticles was attributed to their higher optical absorption ability and smaller particle size, as well as fewer surface defects.
UR - http://www.scopus.com/inward/record.url?scp=57549105647&partnerID=8YFLogxK
U2 - 10.1021/jp807006g
DO - 10.1021/jp807006g
M3 - Article
AN - SCOPUS:57549105647
SN - 1932-7447
VL - 112
SP - 18393
EP - 18398
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 47
ER -