Visual Tracking by TridentAlign and Context Embedding

Janghoon Choi, Junseok Kwon, Kyoung Mu Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Recent advances in Siamese network-based visual tracking methods have enabled high performance on numerous tracking benchmarks. However, extensive scale variations of the target object and distractor objects with similar categories have consistently posed challenges in visual tracking. To address these persisting issues, we propose novel TridentAlign and context embedding modules for Siamese network-based visual tracking methods. The TridentAlign module facilitates adaptability to extensive scale variations and large deformations of the target, where it pools the feature representation of the target object into multiple spatial dimensions to form a feature pyramid, which is then utilized in the region proposal stage. Meanwhile, context embedding module aims to discriminate the target from distractor objects by accounting for the global context information among objects. The context embedding module extracts and embeds the global context information of a given frame into a local feature representation such that the information can be utilized in the final classification stage. Experimental results obtained on multiple benchmark datasets show that the performance of the proposed tracker is comparable to that of state-of-the-art trackers, while the proposed tracker runs at real-time speed. (Code available on https://github.com/JanghoonChoi/TACT ).

Original languageEnglish
Title of host publicationComputer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers
EditorsHiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, Jianbo Shi
PublisherSpringer Science and Business Media Deutschland GmbH
Pages504-520
Number of pages17
ISBN (Print)9783030695316
DOIs
StatePublished - 2021
Event15th Asian Conference on Computer Vision, ACCV 2020 - Virtual, Online
Duration: 30 Nov 20204 Dec 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12623 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th Asian Conference on Computer Vision, ACCV 2020
CityVirtual, Online
Period30/11/204/12/20

Fingerprint

Dive into the research topics of 'Visual Tracking by TridentAlign and Context Embedding'. Together they form a unique fingerprint.

Cite this