TY - JOUR
T1 - Wearable Sleepcare Kit
T2 - Analysis and Prevention of Sleep Apnea Symptoms in Real-Time
AU - Jeon, Yeong Jun
AU - Kang, Soon Ju
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2019
Y1 - 2019
N2 - Obstructive sleep apnea (OSA), although it is a common symptom for ordinary people, is a serious issue in that it can lead to chronic and degenerative brain disease. However, these sleep disorders and apnea symptoms are difficult to diagnose at home or to recognize and cope with severe apnea situations. In response to this, we developed a Sleepcare Kit, an integrated wearable device. The Sleepcare Kit is a wearable distributed system in which the PAAR band and the bio-cradle are combined in the form of a hot plug-in without pre-setting. The PAAR band serves as a gateway for wireless communication with external devices and adjusts initial setting values for various sensors of the bio-cradle. Bio-cradle continuously measures/stores multiple bio-signals (PPG/SPO2, respiration, 3axis-acc, and body temperature) and analyzes the signal data to determine sleep quality and emergency situation in real-time. Although it is a set of small wearable devices, the kit itself diagnoses sleep quality on a real-time base without any external computing assistance while he/she is asleep. Simultaneously, it analyzes the gathered hypopnea and apnea data in real time and calculates the apnea risk phase. Moreover, according to the apnea risk phase, it can inform the wearer or guardian about the danger through the smartphone or smart-speaker. In this paper, we will discuss the algorithm that is used for the detection of sleep apnea in Sleepcare Kit, as well as the software platform for continuous measurement and synchronization of various bio-signals in real time. Moreover, we evaluated the accuracy of the system by comparing the obtained results with the polysomnography equipment used in hospitals.
AB - Obstructive sleep apnea (OSA), although it is a common symptom for ordinary people, is a serious issue in that it can lead to chronic and degenerative brain disease. However, these sleep disorders and apnea symptoms are difficult to diagnose at home or to recognize and cope with severe apnea situations. In response to this, we developed a Sleepcare Kit, an integrated wearable device. The Sleepcare Kit is a wearable distributed system in which the PAAR band and the bio-cradle are combined in the form of a hot plug-in without pre-setting. The PAAR band serves as a gateway for wireless communication with external devices and adjusts initial setting values for various sensors of the bio-cradle. Bio-cradle continuously measures/stores multiple bio-signals (PPG/SPO2, respiration, 3axis-acc, and body temperature) and analyzes the signal data to determine sleep quality and emergency situation in real-time. Although it is a set of small wearable devices, the kit itself diagnoses sleep quality on a real-time base without any external computing assistance while he/she is asleep. Simultaneously, it analyzes the gathered hypopnea and apnea data in real time and calculates the apnea risk phase. Moreover, according to the apnea risk phase, it can inform the wearer or guardian about the danger through the smartphone or smart-speaker. In this paper, we will discuss the algorithm that is used for the detection of sleep apnea in Sleepcare Kit, as well as the software platform for continuous measurement and synchronization of various bio-signals in real time. Moreover, we evaluated the accuracy of the system by comparing the obtained results with the polysomnography equipment used in hospitals.
KW - body-area network
KW - healthcare
KW - hypopnea
KW - sleep apnea
KW - Wearable device
UR - http://www.scopus.com/inward/record.url?scp=85065965397&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2019.2913849
DO - 10.1109/ACCESS.2019.2913849
M3 - Article
AN - SCOPUS:85065965397
SN - 2169-3536
VL - 7
SP - 60634
EP - 60649
JO - IEEE Access
JF - IEEE Access
M1 - 8703103
ER -