Abstract
We demonstrate the dual advantages of graded photoabsorbers in mesoporous metal oxide-based hetero interfacial photoanodes in improving photogenerated charge carrier (e-/h+) separation for the solar light-driven water-oxidation process. The pre-deposition of sol-gel-derived, tungsten-doped bismuth vanadate (W:BiVO4) onto a primary BiVO4 water oxidation layer forms graded interfaces, which facilitate charge transfer from the primary photoabsorber to the charge transport layer, thereby superseding the thickness-controlled charge recombination at the BiVO4 water oxidation catalyst. As a result, the WO3/BiVO4 hetero photoanode containing the photoactive W:BiVO4 interfacial layer showed 130% higher photocurrent than that of the interfacial layer-free hetero photoelectrode owing to the enhanced charge separation led water oxidation process.
Original language | English |
---|---|
Pages (from-to) | 4648-4655 |
Number of pages | 8 |
Journal | Physical Chemistry Chemical Physics |
Volume | 19 |
Issue number | 6 |
DOIs | |
State | Published - 2017 |