ZnO spintronics and nanowire devices

S. J. Pearton, D. P. Norton, Y. W. Heo, L. C. Tien, M. P. Ivill, Y. Li, Sang Youn Han, B. S. Kang, F. Ren, J. Kelly, A. F. Hebard, C. J. Kao, G. C. Chi

Research output: Contribution to conferencePaperpeer-review

Abstract

ZnO is a very promising material for spintronics applications, with many groups reporting room temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during PLD, we find an inverse correlation between magnetization and electron density as controlled by Sn doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for the ferromagnetism include the bound magnetic polaron model or exchange is mediated by carriers in a spin-spilt impurity band derived from extended donor orbitals. We will also review progress in ZnO nanowires. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼-3V and a maximum transconductance of 0.3 mS/mm .Under UV illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼ 5 mS/mm. The channel mobility is estimated to be ∼3 cm 2 /V.s, comparable to that for thin film ZnO enhancement mode MOSFETs and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25 °C , very low reverse currents and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25-150 °C, the resistivity of nanorods treated in H 2 at 400 °C prior to measurement showed an activation energy of 0.089 eV and was insensitive to the ambient used . By contrast, the conductivity of nanorods not treated in H 2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors.

Original languageEnglish
Pages406-423
Number of pages18
StatePublished - 2005
Event207th ECS Meeting - Quebec, Canada
Duration: 16 May 200520 May 2005

Conference

Conference207th ECS Meeting
Country/TerritoryCanada
CityQuebec
Period16/05/0520/05/05

Fingerprint

Dive into the research topics of 'ZnO spintronics and nanowire devices'. Together they form a unique fingerprint.

Cite this